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The dynamic behaviour of structures, in particular, that of a rotor,
containing cracks is a subject of considerable current interest. Several
researchers have developed models of cracked rotor systems considering
mainly a single transverse surface crack. In the present study Finite Element
(FEM) analysis of a rotor system for ¯exural vibrations has been considered by
including two transverse open cracks The eigenvalue analysis and stability
study of a rotor system including a shaft with two open cracks have been
carried out and the in¯uence of one crack over the other for eigenfrequencies,
mode shapes and for threshold speed limits has been observed.

# 1999 Academic Press

1. INTRODUCTION

One form of damage that can lead to catastrophic failure if undetected is fatigue
cracks in the shaft. Several researchers have developed models of cracked rotor
systems in order to predict the change in vibrational behaviour due to crack
growth. Many researchers have realized the importance of the cracked
structures, in particular the dynamics of cracked rotors, which is well
documented in a book by Dimarogonas and Paipetis [1], followed by a literature
survey by Wauer [2]; more recently, a survey on simple rotors by Gasch [3] and a
review on general cracked structures by Dimarogonas [4] have been published.
However, all the work reported above considers mainly a single transverse

crack of the shaft. if the structure is cracked in at least two positions, the
problem of crack sizing and location becomes decidedly more complex. The
double crack assessment for structures has been addressed by relatively few
authors [5±8]. A review on this aspect was done by Ruotolo and Surace [9].
Ostachowicz and Krawczuk [5] have considered a continuous model of a beam

with cracks which are modelled by massless rotational springs and evaluated the
dynamic behaviour with two cracks, while Shen and Pierre [6] considered
symmetric cracks. Surace et al. [7, 8] analysed this problem using both
continuous models and FEM, together with experimental results with two cracks
and studied changes in eigenfrequencies with crack parameters such as location
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and depth. All these studies [5±8] mainly focus on double cracks and on ®nding
the changes in dynamic behaviour when the damage is known.
Development of a generalized state of damage identi®cation procedure for

multiple cracks is also of considerable interest currently. The typical approaches
are based on optimization [10] and with genetic algorithms [11] as pointed out in
reference [9].
The instability of the ®rst and second kind were given by Papadopoulos and

Dimarogonas [12] and the method for the determination of intervals for these
kinds were developed by the same authors [13]. In the stability chart several sub
harmonics of longitudinal and lateral natural frequencies were noticed as
thresholds of instability. Thus, it was shown that a surface crack on a rotating
shaft can yield a variety of unstable areas of operation due to the coupling of
lateral and longitudinal vibration.
Gasch [3] using Floquet theory presented instability zones for a cracked simple

rotor with hinge model. Huang et al. [14] and Chue et al. [15] also examined
rotors using the Floquet theory and found that instability occurs as rotation is
close to an integer fraction or an integer multiple of shaft bending frequency
when the crack depth reaches half the radius.
Ishida et al. [16] found that in the case of a comparatively large imbalance, the

shape of resonance curves changes markedly depending on the relative angular
position of the imbalance to the crack, and an unstable region appears for a
certain range of angular positions. Parametric vibrations [17, 18] and chaotic
motion [19] were also observed in cracked rotors.
In the present study considering the importance of dynamic behaviour of

rotors with double cracks, a parametric study of two transverse open cracks in a
rotor has been carried out, for various crack parameters such as crack depth and
crack location. It also determines the changes in eigenfrequencies and stability
speeds with crack parameters and for shaft parameters such as the slenderness
ratio. Most of the earlier studies involved eigenfrequencies on beams, whereas
here, the cracks are considered in a rotor and stability limits are also evaluated
in the present study.
Finite Element (FEM) analysis of a rotor-bearing system for ¯exural

vibrations has been considered by including two transverse open cracks in the
shaft. The eigenvalue analysis and system stability study of the rotor have been
carried out to observe the in¯uence of one crack over the other for
eigenfrequencies, mode shapes and threshold speed limits. The study has been
carried out for two aligned cracks along the axis. However, this can be extended
for two cracks in two different directions.

2. SYSTEM EQUATION OF MOTION

Nelson and McVaugh [20] presented a ®nite element model using Rayleigh
beam theory for the rotor±bearing system which consists of rigid discs,
distributed parameter ®nite shaft elements and discrete bearings. Ozguven and
Ozkan [21] presented an extended model by synthesizing the previous models.
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The present study uses these models by including the crack model to study the
vibration characteristics of the rotor.
The rotor shaft (see Figure 1) is discretized into ®nite beam elements. As

shown in Figure 1, each element has two translational and two rotational
degrees of freedom for bending mode at each node represented by q1ÿ q8
(though the element is shown with a transverse crack, the degrees of freedom
considered are the same for an uncracked element as well). The discrete
bearing stiffness and damping and the rigid disc mass parameters are considered
at the corresponding degrees of freedom, after assembling the different shaft
elements.
The equation of motion of the complete rotor system (see Figure 1) in a ®xed

co-ordinate system can be written as

�M��q� �D� _q� �K�q � Q �1�

where the mass matrix includes the rotary and translational mass matrices of the
shaft, rigid disc mass and diametral moments of inertia. The matrix D includes
the gyroscopic moments and bearing damping. The stiffness matrix considers the
stiffnesses of shaft, bearing and of the cracked shaft element. The details of the
individual matrices of equation (1) except that of the cracked shaft element are
given in reference [20].
The details of the stiffness matrix of the cracked shaft element are discussed in

section 3. The eigenvalue analysis has been carried out for a non-gyro,
undamped and stationary rotor. The crack has been treated as open. This
element will replace the corresponding uncracked element while assembling
different rotor components.

Figure 1. Model rotor system with a cracked element.
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3. CRACK MODELLING

In the present study the transverse crack has been considered as open. The
¯exibility matrix of a cracked section as given in Papadopoulos and
Dimarogonas [12] and utilized in the FEM analysis of Sekhar and Prabhu [22]
has been used for the crack modelling and the details are presented here.
With the shearing action neglected, and by using the strain energy, the

¯exibility coef®cients for a section of an element without a crack can be derived
in the form,

C0 �
l3=3EI SYM

0 l3=3EI
0 ÿl2=2EI l=EI

l2=2EI 0 0 l=EI

2664
3775,

which is nothing but the inverse of the stiffness matrix of a section of an
uncracked element as obtained in the equation (1). Here l is the length of the
element.
A crack on a beam element introduces considerable local ¯exibility due to

strain energy concentration in the vicinity of the crack tip under load. According
to the principle of Saint-Venant, the stress ®eld is affected only in the region
adjacent to the crack. The element stiffness matrix, except for the cracked
element, may be regarded as unchanged under a certain limitation of element
size [23]. It is very dif®cult to ®nd out an appropriate shape function to express
the kinetic energy and elastic potential energy approximately, because of the
discontinuity of deformation in the cracked element. However, the additional
stress energy of a crack has been studied thoroughly in fracture mechanics and
the ¯exibility coef®cient, expressed by a stress intensity factor, can be easily
derived by means of Castigliano's theorem in the linear elastic range. The shaft
can be divided into elements. The behaviour of the elements situated to the right
of the cracked element may be regarded as external forces applied to the cracked
element, while the behaviour of elements situated to its left may be regarded as
constraints [23]. Thus the ¯exibility matrix of a cracked element with constraints
may be calculated. The additional strain energy due to the crack results in a
local ¯exibility matrix

Cc � 1

F0

�c11R SYM
0 �c22R
0 0 �c33=R
0 0 �c43=R �c44=R

2664
3775,

where F0=pER2/(1ÿ �2), R=D/2 and �=0�3.
The dimensionless compliance coef®cients, �cij of Cc are computed from the

derivations discussed in [12]. One must add the local ¯exibility due to the crack
to obtain the total ¯exibility of the cracked element. The total ¯exibility matrix
for the cracked matrix for the cracked section is given as [C]= [C0]+ [Cc].
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From the equilibrium condition (see Figure 1)

�q1, q2, � � � , q8�T � �T��q5, � � � , q8�T, �2�
where the transformation matrix is

T �

ÿ1 0 0 0
0 ÿ1 0 0
0 l ÿ1 0
ÿl 0 0 ÿ1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

266666666664

377777777775
:

Using the principle of virtual work, the stiffness matrix of the cracked element
can be written as [22, 23],

�Kc� � �T��C�ÿ1�T�T �3�

4. EIGENVALUE AND STABILITY ANALYSES

The crack is assumed to effect only stiffness. The stiffness matrix of a cracked
element, Kc will replace the stiffness matrix of the same element prior to cracking
to result in the global stiffness matrix [�K]. Thus the eigenfrequencies and mode
shapes are obtained by solving the eigenvalue problems [K]ÿo2[M]=0, and
[�K]ÿo2[M]=0, for the uncracked and cracked rotor systems, respectively.
The eigenvalue analysis has been carried out for a non-gyro, undamped and

stationary rotor. The crack has been treated as open. And hence, the stiffness
matrix, [Kc] of the cracked element as evaluated in section 3 replaces the
uncracked shaft element to result in the global stiffness matrix [�K] of the
equation of motion.
The system instability speeds or threshold speeds by including internal

damping effects [24] were also obtained by solving for complex eigenvalues
li= zi+ joi of the system without and with two cracks. The complex
eigenvalues are solved by EISPACK subroutines. The instability speed has been
obtained for the ®rst mode from the logarithmic decrement, d=ÿ2pz/o. The
d< 0 indicates the stability threshold.

5. RESULTS AND DISCUSSION

The results are obtained by introducing two cracks at different locations on a
simply supported steel shaft and compared with uncracked conditions. The crack
parameters, the rotor geometries and undamped eigenfrequencies are expressed
in dimensionless forms.
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Figure 2. Variation of eigenfrequencies with different crack depths for different shaft geometric
ratios. �a1 for each set: top left 0�1; top right 0�2; bottom left 0�4; bottom right 0�5. Key for L/D
values: Ð, 4�0; ±�±, 8�0; - - - -, 12�5 6Ð6, with shear effect, L/D=4. (a) ®rst eigenfrequency; (b)
second eigenfrequency; (c) third eigenfrequency.
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Both forward and backward whirl speeds are present in each mode for the
eigenvalue results. However, the forward and minimum eigenfrequency values
with an increase in crack are presented.
The ®rst crack is considered at Z1/L=0�35 with crack depth given by

�a1 � a1=D, while the second crack has Z2/L=0�65, with a crack depth of
�a2 � a2=D. The rotors with various slenderness ratios, L/D are considered (refer
to Figure 1).
The variations of normalized (with respect to rotor with ®rst crack)

eigenfrequencies with the depth of the second crack for different modes and
different shaft geometric ratios are shown in Figures 2(a±c). The corresponding
mode shapes for ®rst and second modes are shown in Figures 3(a, b). It is seen

Figure 3. Rotor mode shapes for different crack parameters with L/D=4. �a1 values as for
Figure 2. Key for �a2 values: Ð, 0�1; ± - - ±, 0�2; Ð - Ð, 0�3; - - - -, 0�4; ± ± ±, 0�5. (a) ®rst eigen-
frequency; (b) second eigenfrequency.
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clearly from the Figures 2(a±c) that the changes in eigenfrequencies due to a
crack are appreciable in cases of shafts with low slenderness ratio (L/D), similar
to that reported in [22] for rotors with a single crack. As the cracks are closer to
the antinodal points in the case of the second mode and the second crack is
closer to the antinode (center) in the case of ®rst mode, the changes in
eigenfrequencies with crack present are quite signi®cant. However, in the case of
the third mode the changes are quite low except for deeper cracks, as the cracks
are near to the nodal point of that mode. Due to the shift in the node positions
for higher modes the changes in eigenfrequency and mode shape depend on how
close the crack is to the mode shape node.
The eigenvalue analysis has been carried out by including shear effects [25]

also in the case of L/D=4. Here also the normalization is done with the
eigenfrequency (with shear effect in this case) of the uncracked rotor. The results
are presented in Figures 2(a±c).
The effect of shear in¯uences the eigenfrequencies of the cracked rotor also.

But it can be noticed from Figures 2(a±c) that the difference between the
variations of normalized eigenfrequencies with crack depth for the cases of with

TABLE 1

Variation of normalized first eigenfrequencies with crack parameters, L/D=8

Z2/Lz�������������������������������������������������������������������}|�������������������������������������������������������������������{
a2/D 0�15 0�3 0�5 0�7 0�85

Z1/L=0�35, a1/D=0�1
0�1 0�9871 0�9828 0�9801 0�9840 0�9882
0�2 0�9785 0�9626 0�9522 0�9668 0�9840
0�3 0�9604 0�9218 0�8989 0�9320 0�9752
0�4 0�9268 0�8539 0�8159 0�8725 0�9585
0�5 0�8648 0�7488 0�6972 0�7760 0�9250

Z1/L=0�35, a1/D=0�25
0�1 0�9409 0�9375 0�9350 0�9384 0�9419
0�2 0�9334 0�9194 0�9106 0�9235 0�9384
0�3 0�9174 0�8833 0�8636 0�8934 0�9308
0�4 0�8878 0�8230 0�7894 0�8413 0�9165
0�5 0�8335 0�7279 0�6810 0�7549 0�8882

Z1/L=0�35, a1/D=0�35
0�1 0�8785 0�8757 0�8738 0�8765 0�8793
0�2 0�8723 0�8608 0�8539 0�8647 0�8765
0�3 0�8589 0�8306 0�8148 0�8400 0�8705
0�4 0�8343 0�7795 0�7515 0�7968 0�8589
0�5 0�7886 0�6972 0�6564 0�7232 0�8360

Z1/L=0�35, a1/D=0�45
0�1 0�7834 0�7815 0�7799 0�7820 0�7840
0�2 0�7790 0�7709 0�7663 0�7741 0�7815
0�3 0�7694 0�7488 0�7378 0�7568 0�7780
0�4 0�7514 0�7102 0�6898 0�7253 0�7700
0�5 0�7169 0�6458 0�6140 0�6694 0�7537
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and without shear effects is not much except in mode III (Figure 2c), where the
reduction in normalized eigenfrequency as such is very low. Hence, all other
results are calculated for the cases without shear effects.
From the mode shapes shown in Figures 3(a, b) it can be observed very clearly

the changes in slopes and deviations are due to cracks in mode shapes at crack
positions of Z/L=0�35 and 0�65. Thus extending this for various crack locations
and depths one can construct a contour diagram of eigenfrequencies for each
crack position and depth. According to this diagram, the depth of the crack can
be read from its cracked eigenfrequency if the position of crack is known from
the sharply changed curves of deviation of the mode shape [26].
It can be seen from Figure 2a that in the presence of the ®rst crack with

suf®cient depth ��a1 � 0�2�, a second crack with even a small depth caused a large
drop in eigenfrequency (see Figure 2a with second crack of depth 0�1).
A parametric study by varying the cracks' locations (Z/L) and depths, (a/D)

of a rotor of L/D=8, for both eigenvalue analysis and stability limits has been
carried out with the results shown in Table 1±6. For this study of both
eigenvalue and stability analysis the normalization is done with that of an
uncracked rotor.

TABLE 2

Variation of normalized second eigenfrequencies with crack parameters, L/D=8

Z2/Lz�������������������������������������������������������������������}|�������������������������������������������������������������������{
a2/D 0�15 0�3 0�5 0�7 0�85

Z1/L=0�35, a1/D=0�1
0�1 0�9849 0�9854 0�9934 0�9839 0�9871
0�2 0�9615 0�9638 0�9925 0�9569 0�9724
0�3 0�9162 0�9261 0�9907 0�9097 0�9417
0�4 0�8466 0�8755 0�9879 0�8468 0�8877
0�5 0�7544 0�8182 0�9840 0�7756 0�7999

Z1/L=0�35, a1/D=0�25
0�1 0�9626 0�9631 0�9694 0�9597 0�9631
0�2 0�9429 0�9452 0�9679 0�9315 0�9483
0�3 0�9039 0�9133 0�9649 0�8821 0�9176
0�4 0�8413 0�8691 0�9604 0�8163 0�8638
0�5 0�7537 0�8163 0�9543 0�7420 0�7767

Z1/L=0�35, a1/D=0�35
0�1 0�9358 0�9363 0�9407 0�9309 0�9348
0�2 0�9203 0�9226 0�9382 0�9014 0�9199
0�3 0�8882 0�8972 0�9334 0�8494 0�8890
0�4 0�8342 0�8604 0�9257 0�7796 0�8351
0�5 0�7528 0�8136 0�9151 0�7003 0�7484

Z1/L=0�35, a1/D=0�45
0�1 0�9017 0�9022 0�9044 0�8948 0�8990
0�2 0�8908 0�8932 0�9002 0�8641 0�8844
0�3 0�8671 0�8755 0�8921 0�8088 0�8536
0�4 0�8239 0�8478 0�8785 0�7336 0�7994
0�5 0�7514 0�8094 0�8588 0�6466 0�7125
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The ®rst and second eigenfrequencies corresponding to the various crack
conditions of both cracks are shown in Figures 4 and 5, respectively. The crack
at the mid span has resulted in lower eigenfrequencies due to the reasons as
explained earlier. But in Figure 5 the eigenfrequencies of the second mode for
which the nodal point of the mode shape at the midpoint of the span gives one
more piece of information about crack position: i.e., if the crack is located on a
nodal point of a certain mode, the corresponding frequencies would be the same
for all sizes of crack and the same in turn as those for no crack. The nodal point
of a mode shape can be taken as ``point of in¯ection'' at which the bending
moment vanishes [26].
A stability analysis is also carried out on the same rotor supported on rigid

bearings as used in the eigenvalue analysis. The results are shown in Table 5.
Since the system stability depends on internal damping, the viscous damping
coef®cient, Zv=0�0002 s and hysteretic damping, ZH=0�00002 are also included
for the analysis.
Figure 6 shows the variation of normalized (with uncracked rotor) threshold

speeds with crack parameters for the case of a mid span second crack and ®rst
crack at Z1/L=0�35. Stability results are also obtained for the same rotor on

TABLE 3

Variation of normalized third eigenfrequencies with crack parameters, L/D=8

Z2/Lz�������������������������������������������������������������������}|�������������������������������������������������������������������{
a2/D 0�15 0�3 0�5 0�7 0�85

Z1/L=0�35, a1/D=0�1
0�1 0�9866 0�9982 0�9889 0�9972 0�9882
0�2 0�9587 0�9969 0�9628 0�9902 0�9635
0�3 0�9137 0�9946 0�9185 0�9785 0�9170
0�4 0�8618 0�9910 0�8623 0�9638 0�8518
0�5 0�8141 0�9863 0�8036 0�9478 0�7806

Z1/L=0�35, a1/D=0�25
0�1 0�9741 0�9868 0�9791 0�9859 0�9780
0�2 0�9425 0�9851 0�9558 0�9794 0�9555
0�3 0�8909 0�9819 0�9151 0�9683 0�9123
0�4 0�8316 0�9771 0�8612 0�9544 0�8498
0�5 0�7767 0�9709 0�8022 0�9395 0�7798

Z1/L=0�35, a1/D=0�35
0�1 0�9584 0�7227 0�9663 0�9717 0�9650
0�2 0�9225 0�9697 0�9466 0�9656 0�9452
0�3 0�8629 0�9649 0�9104 0�9552 0�9059
0�4 0�7929 0�9577 0�8598 0�9424 0�8470
0�5 0�7295 0�9486 0�8010 0�9287 0�7787

Z1/L=0�35, a1/D=0�45
0�1 0�9372 0�9521 0�9486 0�9523 0�9472
0�2 0�8966 0�9482 0�9935 0�9469 0�9308
0�3 0�8276 0�9405 0�9034 0�9376 0�8966
0�4 0�7451 0�9286 0�8575 0�9260 0�8429
0�5 0�6689 0�9124 0�7993 0�9139 0�7769
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¯exible isotropic bearings of stiffness and damping values of 46 107 N/m and
103 Ns/m respectively (see Table 6).
The following observations can be made from the parametric study.

TABLE 4

Variation of normalized eigenfrequencies with cracks far off, L/D=8, Z1/L=0�1, Z2/
L=0�85

a1/Dz��������������������������������������������������������������}|��������������������������������������������������������������{
a2/D 0�10 0�25 0�35 0�45

I MODE
0�1 0�9967 0�9887 0�9762 0�9519
0�2 0�9925 0�9846 0�9722 0�9485
0�3 0�9834 0�9757 0�9637 0�9408
0�4 0�9659 0�9588 0�9476 0�9259
0�5 0�9314 0�9254 0�9155 0�8963

II MODE
0�1 0�9892 0�9622 0�9219 0�8535
0�2 0�9747 0�9488 0�9102 0�8443
0�3 0�9444 0�9208 0�8854 0�8243
0�4 0�8909 0�8711 0�8407 0�7873
0�5 0�8034 0�7888 0�7655 0�7230

III MODE
0�1 0�9822 0�9382 0�8828 0�8144
0�2 0�9577 0�9162 0�8636 0�7979
0�3 0�9117 0�8744 0�8263 0�7648
0�4 0�8471 0�8148 0�7717 0�7145
0�5 0�7766 0�7485 0�7091 0�6544

TABLE 5

Variation of normalized threshold speed with crack parameters for a rotor on rigid supports,
L/D=8

Z2/Lz�������������������������������������������������������������������}|�������������������������������������������������������������������{
a2/D 0�15 0�3 0�5 0�7 0�85

Z1/L=0.35, a1/D=0.1
0�1 0�9618 0�9605 0�9575 0�9587 0�9661
0�2 0�9474 0�9393 0�9280 0�9505 0�9587
0�3 0�9213 0�9193 0�9068 0�9375 0�9525

Z1/L=0�35, a1/D=0�2
0�1 0�9312 0�9274 0�9262 0�9243 0�9274
0�2 0�9150 0�9113 0�9019 0�9183 0�9248
0�3 0�8954 0�8931 0�8869 0�9081 0�9193

Z1/L=0�35, a1/D=0�25
0�1 0�9050 0�9032 0�9062 0�8950 0�9062
0�2 0�8950 0�8931 0�8856 0�8838 0�9019
0�3 0�8819 0�8769 0�8676 0�8738 0�8981
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1. Any reduction in the eigenfrequency of a mode is largest if the cracks are
near to each other and closer to the antinodal point of that mode shape.
2. When the distance between the cracks increases, the reduction in rotor

eigenfrequencies are not signi®cant even with deep cracks ��a1 � �a2 � 0�45�. But
it is very signi®cant for the third mode due to the reasons as stated in (1), the
cracks are closer to the antinodal points.
3. Also it can be noticed that in the case of two cracks of different depths, the

larger crack has the more signi®cant effect on the eigenfrequency (Figure 2a).

TABLE 6

Variation of normalized threshold speed with crack parameters for a rotor on flexible
supports, L/D=8

Z2/Lz�������������������������������������������������������������������}|�������������������������������������������������������������������{
a2/D 0�15 0�3 0�5 0�7 0�85

Z1/L=0.35, a1/D=0.1
0�1 0�9679 0�9671 0�9489 0�9706 0�9717
0�2 0�9499 0�9496 0�9315 0�9669 0�9669
0�3 0�9352 0�9351 0�9278 0�9597 0�9597

Z1/L=0�35, a1/D=0�2
0�1 0�9415 0�9411 0�9296 0�9333 0�9442
0�2 0�9342 0�9324 0�9196 0�9260 0�9405
0�3 0�9233 0�9217 0�9179 0�9206 0�9388

Z1/L=0�35, a1/D=0�25
0�1 0�9296 0�9296 0�9188 0�9224 0�9315
0�2 0�9251 0�9242 0�9124 0�9188 0�9297
0�3 0�9205 0�9198 0�9080 0�9224 0�9277

Figure 4. Variation of ®rst eigenfrequency with depth and location of second crack, Z1/
L=0�35, a1/D=0�1.
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4. The changes in eigenfrequencies due to cracks are appreciable in the cases
of shafts with low slenderness ratio, L/D.
5. The effect of crack on the stability threshold is very signi®cant for the case

of a crack at the mid span. Even though the cracks are closer when Z1/L=0�35
and Z2/L=0�3 the effect on the stability limit is not signi®cant (Table 5) as
compared to that with mid span second crack. This is similar to the point 1.
6. Compared to the reduction in the eigenfrequencies with crack depth, the

effect of rise in crack depth on the threshold speed limits is signi®cant for the
rotor considered here (see Figure 7). Also, it is noticed from Figure 7 that at
certain speeds the eigenfrequency has reduced so much it becomes threshold
speed. This reduction in threshold speed limits is reduced if the bearing supports
are made ¯exible. However, the internal damping plays a signi®cant role on the
system stability of rotors. Hence, the effect of cracks together with different

Figure 5. Variation of second eigenfrequency with depth and location of second crack, Z1/
L=0�35, a1/D=0�1.

Figure 6. Variation of threshold speed with depths of cracks, Z1/L=0�35, Z2/L=0�5.
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internal damping values need to be analysed, before any de®nite conclusion can
be made on the stability.
7. The increase in crack depth have a very signi®cant effect on threshold

stability speeds even for small crack depths, which is evident from Figure 7 and
Tables 5 and 6.

Some observations are similar to those reported in [5] where only fundamental
eigenfrequencies have been considered. The study has been carried out for two
aligned cracks along the axis. However, this can be extended for two cracks in
two different directions.

6. CONCLUSIONS

Finite element (FEM) modelling of a rotor-bearing system has been
considered for the study of vibration characteristics of a rotor with two
transverse open cracks.
The changes in eigenfrequencies due to cracks are appreciable in cases of

shafts with low slenderness ratio, L/D.
It has been noticed that in the case of two cracks of different depths, the

larger crack has the more signi®cant effect on the eigenfrequency.
Compared to the reduction in eigenfrequencies with crack depth, the effect of

cracks on threshold speed limits is signi®cant. Also, the effect of a small crack
on the stability speed is very much evident from the results.
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